Class Notes on the Untyped Lambda Calculus
Chuck Liang

Hofstra University Computer Science

1 Background and Introduction

The Lambda Calculus is an abstract, mathematical basis for studying properties of pro-
gramming languages just as integral calculus is used to study physics and other sciences.
It was invented by Alonzo Church, who along with Alan Turing is considered one of the
founders of computer science. We will study the basics of the lambda calculus for two
reasons. First, most modern programming languages have direct support for “lambda ex-
pressions”, and they are increasingly being used in advanced programming. Secondly, and
far more importantly, the lambda calculus is a theoretical foundation for most of computer
science: all computer algorithms can be explained by the lambda calculus (this is part of
what is called the “Church-Turing Thesis.”) It explains the behaviors of most programs
and languages even when they don’t use lambda expressions explicitly.

There are two versions of the lambda calculus: typed and untyped. They roughly cor-
respond to statically typed (compiler-based) and dynamically typed (interpreter-based)
languages. This document will focus on the untyped lambda calculus.

The syntax of the lambda calculus will look strange at first. Essentially it is trying to
answer the question: how do we apply a program to input? We can study this problem in
the form of how to apply a function to an argument. In many languages we write this as
f(t), where fis the function and t is the argument. In lambda calculus we write this as (f ¢).
Essentially, applying a program (function) to an input (argument) requires “substitution,”
which is to just replace each occurrence of the formal argument with the actual argument.
The lambda calculus is the smallest and the purest programming language. It is purely
mathematical in that it is not concerned about how computation is to be implemented
physically, only how symbols are to be transformed.

Each language has a syntax for specifying functions. In lambda calculus functions are
represented using the A binder. So ’def f(x): return x*x’ in Python, for example,
will be f = Az.(x x x). The Ax. “binder” defines the (formal) argument to the function.
The A-term itself is a value, sometimes called a nameless function, and we are just using
the symbol f to refer to it. When we apply the function to an (actual) argument, like
in (f 4), we replace each x in the body of the function with 4, which results in 4 % 4, or
(* 4 4): this expression must be evaluated further using the built-in function for . The
evaluation continues until we reach a “normal form,” such as 16, which can’t be evaluated
any further. Sounds simple enough, but there are some complications.

Actually, in Python you can also just write ’f=lambda x:x*x’, but even in languages that

do not support lambda syntax directly, the lambda calculus is still significant. Consider
the following C programs:

int f(int x)

{
int y = 1;
{
{ // starts inner scope
int x = 2;
N AR
b
b
return y+x; // which x is this referring to?
3

What should happen if we applied f(4)? We can’t just replace all a’s with 4: we need
to recognize that there are two z’s in the body, and only the outer one corresponds to
the formal argument. f(4) should return 7, but only if we respect the scope of variables.
Consider another example:

int y = 1; // variable declared external to f (such as a global)
int f(int x)
{

int y = 8;

return x+y;

What should happen if we applied f(y + 1)? You should know that it will return 10, but
only because you understand that there are two g’s and which y is being referred to in
x +y. If we just blindly replaced = with y + 1, the function would return 17.

Finally, consider the complete C program:

#include<stdio.h>

int x = 1;

int f(int y) { return x+y; }
int main()

{
int x = 2;
printf ("%d\n", £(0)); //What will this print? What SHOULD it print?
return O;

}

Which z is the z in the body of f referring to? Why?

To handle these situations correctly, we need to enhance our strategy to replace formal
arguments with an actual arguments. First, we need to distinguish between local variables
(called “bound variables” in the lambda calculus) and non-local variables (called “free
variables”).

2 Formal Definitions

An expression (term) in the lambda calculus is defined inductively as follows:

1. a variable, z, y, 2z etc.
2. (A B), where A and B are both lambda terms. This is called an “application”.
3. \x.A, where z is a variable and A is a lambda term. This is called an “abstraction.”

4. A known constant such as 3. Constants are not strictly necessary but we will include
them in order to show more interesting examples. Constants can also be functions:
for example, * is used to represent the multiplication function in most languages.

For example, Az.(y x) is a lambda term because x and y are variables, so (y z) is a term
and therefore Az.(y x) is also a term.

According to this definition, (3 3) is a valid lambda term, and is read as “three applied
to itself.” That’s fine. The lambda calculus is a purely symbolic, that is to say purely
syntactic, system. Do not try to attach any meaning to the symbols and rules just yet.

Syntactic Conventions: Applications in lambda terms associates to the left, and applica-
tions bind tighter than abstractions. This means that (a b ¢) is equivalent to ((a b) ¢) and
not to (a (b ¢)). The parentheses are dropped when not needed. The term Az.z y should
be understood to be equivalent to Az.(x y) and not to (Az.z) y, because application binds
tighter than abstraction: in other words, the scope of the Az binder extends to the right
until it’s delimited by enclosing ()s. Thus in (Az.a) (b ¢) both pairs of parentheses are
needed, but in Az.((a b) ¢) both are superfluous.

Here’s another way to understand the syntactic conventions. Write applications A B as
app(A, B) and write abstractions Az.A as abs(x, A). Then application associates to the
left means that A B C represents app(app(A, B),C) and not app(A,app(B,C)). Appli-
cation binds tighter than abstraction means that Axz.A B is abs(z,app(A, B)) and not
app(abs(z, A), B).

Given an abstraction Ax.M (where M is an arbitrary term), M is called the “body” of the
A-abstraction and Az is the “binder.” We can think of such an abstraction as a function
that takes x then evaluates and returns M.

Free and Bound Variables

Inside a given term, variables can be local or non-local. Local variables are those that
occur inside the scope of a A-binder, and free variables are those that do not. For example,
in Az.(y = x), x is bound and and y is free. Whether a variable is free or bound depends
on the exact term in question: in the entire term Az.(z y), = is bound, but in the body
(x y), = is free. The variable x that forms a part of the binder Az can also be consider
bound, but it’s not part of the body of the term (it declares that a variable is bound in
the body). Consider the more interesting example:

Ar.y (\r.x)

Observe that by the syntactic conventions, this term should be read as Az.((y (Az.x))).
In the entire term, all occurrences of x are bound and y is free. Inside the body of the
term y (Ax.xz) x, however, the right-most occurrence of x is free but the one inside the
parentheses is bound. The right-most x refers to the outer Az binder.

Substitution and Beta-Reduction

Now we can more formally define how to apply a function in the form of a A-abstraction
to an argument. First, we define substitution:. Given a term M, let M[N/x] represents
the term obtained by replacing all free occurrences of x in M with N. Furthermore, we
require the following condition: the free variables of N cannot appear bound in M.

For example, the substitution ((Az.x) x)[N/z] yields the term (Az.x) N: only the free
occurrence of x in the term is replaced with N. The bound instance of x in the term
represents a local variable, and should not be replaced: in other words, Az.x is self-
contained (the proverbial “black box”).

Now we define the most critical rule of Lambda Calculus, called “beta reduction”:
(Az.M) N =5 M[N/z]
That is, to apply a A-abstraction (function) to an argument, substitute N for x in M under

the following two conditions:

1. Only the free occurrences of x in M are to be replaced (x is bound in the entire term
(Az.M) but it may be free in the body M).
2. The free variables contained in N may not be bound in M.

A term in the form (Azx.M) N is called a beta-redez: a place where beta-reduction can be
applied. Consider some examples:

e (Ax.x+x) y beta reduces (=) to y +y. Here, M is x +x and N is y and we replace
both free occurrence of x in M with y.

e (\x.y) z = 'y . Here, M is y and N is z. There are no free z’s in the body,
so there’s nothing to replace: y[z/x] is still y. Such lambda terms correspond to
functions that do not use their arguments. The Az binder here is vacuous.

e AxAy.y x) u (Aw.w) = wu. It is tempting to think of a term that begins with
AzAy ... as a “function that takes two arguments,” but it is actually a function
that takes one argument and returns another function, which takes the other argu-
ment. Such functions are called “Curried” functions (referring to the logician Haskell
Curry). In this example, we first replaced = with u, resulting in the intermediate
term (Ay.y u) (Av.v). For this beta-redex, the argument (V) is itself a lambda-term,
and we replace y with Av.v. This results in the term (Av.v) u. One final reduction
reduces this to u. In other words, the reduction steps are:

Azdyy z) uw (Av.w) = (Ay.y u) (Avw) = (W) u=u

e The next term corresponds to the second C program given in the introduction:
(AyAz.(Ay.x +y) 8) 4

Please read the parentheses carefully: there’s an inner beta-redex, which is (Ay.x +
y) 8 where M is x+y and N is 8, and an outer beta-redex, where M is A\z.(Ay.z+y) 8
and N is 4. It does not matter which redex we reduce first (this is called the
confluence property.). Let us reduce the outer redex first: this means substitute all
free occurrences of y in the body with 4, but there are actually no free occurrences
of the outer y in the body: the y inside the body is bound locally. The reduction
sequence is therefore:

MyAz.(Ay.x+y) 8) 4 = .(\yx+y) 8 = .o +38

In the last step, we reduced the beta-redex inside the outer Az, which is (Ay.x +y) 8.

In each case above we reduced the term until there are no beta-redexes anywhere in the
term, resulting in a beta normal form.

Are all terms reducible to normal forms? NO. The standard example is
(Az.x) (Az.x) = (A\v.zz) (\r.o)

Yes, this is a term that applies its argument to itself and is itself applied to itself, and such
a term reduces to itself. Got it? Don’t even try to understand it intuitively: just apply
the rules of beta reduction. Both free occurrences of x in the body x x are replaced by the
argument, which is (Az.z z) (which does not contain any free variables so the restrictions
on substitution do not apply). The term reduces back to itself and therefore will never
be in normal form. The existence of such terms is important if we are to have repetition
(loops, recursion) in our programs.

Bad Examples of Beta Reduction:

My Ar.x y) v = (Az.z) v = wv. This is wrong because we misused the syntactic
conventions of the lambda calculus. The first reduction results in Az.x v, which is
not the same as (Ax.xz) v because application binds tighter than abstraction: it is
equivalent to Az.(x v), which is already in normal form.

o (A\z.yx) (A\uww) z = (Az.y x) z = y z. This is wrong because application should as-
sociate to the left: the correct reduction sequence is (Az.y z) (Au.u) z = y (Au.u) z,
which is already in normal form.

e Ay yyy) v = (Ay.w v). We didn’t make the same mistakes as above but we
made a worse one. We can only replace free occurrences of y inside the body of the
outer A\, which is Ay.y y. There are no free occurrences of y in this term! The correct
normal form is Ay.y y.

o (A\y.Az.x y) x = (Az.z z). In the lambda calculus, this is as bad a mistake as you
could possibly make. You violated the second restriction to beta reduction: the free
variables of N cannot appear bound in M. N in this case is the free variable x, but
inside the body of the A-term, x is bound (a local variable). From a programmer’s
perspective, this restriction should be intuitive: the local (bound) variable x should
not be confused with externally defined (free) variables by the same name. The
wrong reduction does what’s called “free variable capture.” Free variables must stay
free after reduction.

So how do we reduce terms like in the last example? We just rename the bound variable
to separate it from the free variable.

Alpha Conversion

Surely int f(int y) {return y;} and int f(int x) {return x;} are the same pro-
gram. Not only do they behave the same, but they are syntactically the same: the only
difference is in the choice of the local (bound) variable used. In lambda calculus, terms
such as A\z.x and Ay.y are called alpha-equivalent. Each term can be alpha-converted to the
other by replacing the names of bound (local) variables consistently. Formally, a variable
y is called fresh with respect to a term M if y does not appear anywhere in M: it’s a new
variable!. Alpha conversion is defined by:

Xe.M =, Ay.Mly/x]
where y is fresh with respect to M.

It is important to remember that alpha-equivalence is a purely syntactic equivalence and
does not assume anything about the meaning of symbols. For example, AxAy.x + y and
Ay.Az.y + x are alpha-equivalent (one can be converted to the other by first replacing
one of the variables with an intermediate fresh variable z). However, AzAy.z + y and

Ltechnically, it can appear in some places but to simplify things, let’s assume that it’s a completely new
variable not found anywhere in M.

Azx.\y.y + x are not alpha-equivalent. First, you cannot assume that the symbol '+’
represents numerical addition, which is commutative. In many languages + is used for
string concatenation which is not commutative ("ab” # ”ba”). Secondly, even if + is
known to be commutative the two terms are still not alpha-equivalent because they are
structurally different. Alpha-equivalence is a purely syntactic property.

We need alpha-conversion to allow beta reduction to proceed correctly when the names
of free and bound variables clash. In the example (Ay.Az.z y) x, we can apply alpha
conversion to the lambda term and rewrite it as (A\y.Az.z y) z, which then reduces to
Az.z x: the free variable z is not illegally captured by the local binder. This example
roughly corresponds to the situation found in the first C program of the introduction.

We can only change the names of bound variables, not free variables. It would be illegal
to change the outer (rightmost) x to something else. Free variables correspond to external
variables which may be in use elsewhere, not just locally.

3 Basic Combinators

A lambda term without any free variables (completely self-contained) is called a combina-
tor. There are three famous ones:

1. 1 = Az
2. K = \r)\y.x

3. 8 = Axdydz.x z (y 2)

It is know that all other combinators can be generated by combining these terms in some
fashion. Let’s look at how they behave. First, it should be clear, if you understood the
above, that ((Az.x) A) beta-reduces to A, regardless of the what kind of term A is. So
we can write down an axiom: /A = A. Now consider K: this terms takes two arguments
(actually one after the other), and ignores the second argument. Given any two terms A
and B where y does not appear free in A (alpha-convert K otherwise), (K A B) reduces
to A:
(K AB)=(AMyx) AB = (\y.A) B = A

In the last step, because y is not free in A, A is not affected by the substitution A[B/y].
Since K can always be alpha converted away from the free variables of A, we can write
down another axiom: KAB = A.

Now consider (K I A B) where I is (alpha-equivalent to) Au.u and A and B are arbitrary.
Recall that by syntactic convention, this is the term ((K I) A) B. First we reduce the
innermost redex (K I):

KI = (AzxXy.x)] = (Ay.I) = y. v

This terms takes two arguments and this time it ignores the first argument. We should
see that KIAB = (AyAv.w)AB = (MAv.v)B = B. So we’ve another axiom: KIAB = B.
We can alpha convert K1 to AzAy.y.

It may appear that terms (such as K and KI), which ignore some of their arguments
are pointless. But in fact, they correspond to something you’re already very familiar as
programmers. Given two choices A and B, K chooses A and K1 chooses B. We are now
beginning to see how lambda terms correspond to constructs found in every programming
language, in this case Boolean expressions and if-else. But let’s first look at an example
involving S:

SKI=Mxdyrzx z (y2)) K1 = A2 K z (y2) I =2 K 2z (I 2) = A2z

In the last step, we applied the axiom K AB = A where A is z and B is (I z). Alternatively,
we can first reduce (I z) to z with the axiom IA = A, but the result will be the same.

4 More Powerful Combinators

When Church invented the lambda calculus, he wasn’t just thinking about computing.
There was a hypothesis (called “Hilbert’s Program”) that all mathematical problems can
be algorithmically solved. Eventually, this hypothesis was proven to be false by Kurt Godel
and his incompleteness theorems. But many (though not all) mathematical properties can
be described by the lambda calculus. The most basic computational operations are adding
and multiplying numbers ...

4.1 Church Numerals

Church formulated a representation of natural numbers as lambda terms: zero is A fAz.x,
one is AfAz.f x, two is is AfAz.f (f x), three is AfAzx.f (f (f x)), and so on. Why
did he write numbers this way? Because he wanted to study the algorithmic properties
of numbers. The “meaning” of a number is, to him, defined by what we do with them,
i.e., arithmetics. With this representation of numbers, basic arithmetic operations can be
defined as lambda terms:

e PLUS = dmMAflxx.m f (n f x)
o TIMES = AmAnAfiz.m (n f) z
Other operations are also possible (the one for subtraction is pretty hard). For example,

we can show that 1 4+ 2 = 3 using beta-reduction:

(PLUS 12) =Mzl f (2 fx) = M w1 f (f (f2) = Afra.f (f (f2)) =3

I first substituted 1 and 2 for m and n respectively, then reduced (2 f z) to f (f z).
Plus works by substituting one number into the end of the other number. Times works by
replacing each f with more f’s. As an exercise, you can verify that (TIMES 2 3) = 6.

We won’t go further into Church numerals except to say that all basic arithmetic operations
can be represented as pure lambda calculus. Even though in actual languages we don’t
use lambda terms to represent numbers, lambda calculus provides a theoretical unity to
different kinds of computation.

4.2 Booleans and If-Else

A programming language needs more than just numbers and arithmetic. Church’s philo-
sophical approach to thinking about numbers extends to truth and falsehood. What is
the significance of true and false from a purely computational standpoint? It depends on
what we can do with true and false. As programmers, you certainly know what to do with
these booleans: we use them to make decisions. From this algorithmic standpoint, true
and false just represent two opposing choices:

e TRUE = K = \zx)\y.x
o FALSE = KI = Ax)\y.y

Then the familiar if-else construct can be defined by:

e [FELSE = AcAa\b.(c a b)

IF-ELSE takes three (Curried) arguments: a boolean expression ¢ that should reduce
to TRUE or FALSE, and two choices a and b. Since Kab = a and Klab = b, true
chooses a and false chooses b. Thus (IFELSE TRUE 1 2) will beta-reduce to 1 and
(IFELSE FALSE 1 2) will beta-reduce to 2.

The lambda calculus should start to look less strange to you now ...

What about the boolean operations and, or and not? All of these can be defined in terms
of if-else. For example:

e NOT = Xa.(IFELSE a FALSE TRUE)
e AND = Xa\b.(IFELSE a b FALSE)
That is, NOT is defined as a function that takes a as an argument and has body

if (a) return false; else return true. AND is a function that takes a and then b
with body if (a) return b; else return false. For example, (AND TRUE FALSE)

beta-reduces to (IFELSE TRUE FALSE FALSE), which reduces to FALSE. If you're
not convinced, do truth tables to see that these pure lambda terms do indeed have the
expected behaviors of the boolean operations.

As an exercise, define OR.

4.3 Data Structures and Encapsulation

How do we construct a single structure from multiple components, and how do we destruct
(break down) such a structure into its components? This sounds like a challenge to lambda
calculus, but all we need to do is to represent a pair of values, which we normally write
as (a,b). Then, using nested pairs, we can construct data structures of any complexity.
For example, a linked list is just a sequence of nested pairs ending in some designated
value representing the empty list: (a, (b, (¢, (d,null)))). For historical reasons the three
operations we define are called cons, car and cdr:

e CONS = laXbAc.(c a b)

o CAR = A\p.(p TRUE)

e CDR = \p.(p FALSE)
Given two terms A and B, (CONS A B) returns (beta reduces to) a pair represented by
Ae.(c A B). “This is not a pair, it’s a function!” says you. Yes, but this function has
all the behaviors we want from a pair. The argument c is expected to be a boolean value
and recall that (c a b) is equivalent to (IFELSE c a b): true selects a and false selects b.
Given such a “pair” represented by P = Ac.(c A B), (CAR P) reduces to (P TRUE),

which then reduces to (TRUE A B). Thus (CAR P) returns A. (CDR P) will similarly
return B. CON S constructs the structure and CAR, CDR destruct it.

To represent linked lists, we also need to choose a term for the empty list (typically called
null or nil:) as well as a way to determine if a pair is empty or not.

e NIL =Xz \y.y (same as FALSE and zero).

o ISNIL = Ap.p (AzA\y.\z.FALSE) TRUE
(ISNIL NIL) reduces to NIL (AxAy.\z.FALSE) TRUE, which reduces to TRUE be-

cause NIL ignores the first argument and returns the second (KIAB = B). But given a
non-empty pair P = Ac.(c A B), (ISNIL P) reduces to:

P (\zAy.\z.FALSE) TRUE = (AzAy.\2.FALSE) A BTRUE = FALSE.

Now we can define a linked list as in

M = (CONS 2 (CONS 3 (CONS 5 (CONS 7 NIL))))

10

and write expressions such as (CAR (CDR M)), which extracts the second value from
the list (verify that it reduces to 3). We can also write I[FELSE (ISNIL M) A B. Add
“syntactic sugar” to make it look like your favorite language.

Once we have pairs we can build other structures of arbitrary complexity. For example,
binary tree nodes can be represented by (CONS X (CONS LEFT RIGHT)).

Representing data structures using functions is not so strange once you realize that this is
exactly what we want when constructing an “abstract data type.” For example, we often
construct a class that contains private values and public access functions. The public
functions form the interface to the data type: the values that make up the data structure
are thus encapsulated.

4.4 Repetition (Recursion)

We need another component to create a basic programming language: recursion. The usual
loop constructs of ordinary languages can be seen as special cases of recursion. The idea is
to create a fized point operator fix with the behavior that fix M reduces to M (fixz M).
This will allow us to repeat arbitrarily many Ms, or form loops that repeatedly evaluates
M. Combined with IFELSE, we can terminate the loop when some condition is reached.

o FIX = m.(Az.m (z x)) (Ax.m (z x))

This term is similar to the term we saw earlier that reduces to itself and has no normal
form. We verify that:

(FIX M) = (Az.M (zzx)) MM (xx)) = M (M. M (zzx)) (Ae.M (xx)) =M (FIX M)

If it ever seemed strange to you that you can define a function that refers to itself, the
FIX operator doesn’t actually do that: it’s applied to a function that names the recursive
function using a A-binder. The following recursive program computes the sum of all
numbers in a linked list:

SUM = FIX (\fAnIFELSE (ISNIL n) ZERO (PLUS (CAR n) (f (CDR n)))

The recursive function is called by the A-bound variable f. To see how recursion works in
more detail, here M is A\f.\n.IFELSE (ISNILn) ZERO (PLUS (CARn) (f (CDRn))
and SUM = FIX M = M (FIX M). For example,

SUM (CONS 2 NIL) = M (FIX M) (CONS 2 NIL) =

IFELSE (ISNIL (CONS 2 NIL)) ZERO (PLUS 2 (FIX M NIL)) =
(PLUS 2 (FIX M NIL)) = (PLUS 2 (M (FIX M) NIL)) = (PLUS 2 0) = 2

The recursion stoped and returned 0 when (ISNIL NIL) reduced to TRUE. We note
that all elements of this program are definable in pure lambda calculus.

11

5 Order of Evaluation

As examples such as SK I show, there are often multiple beta-redexes inside a term and
there are different strategies for selecting which one to reduce first. Most popular pro-
gramming languages use call-by value evaluation, which means that the actual arguments
to a function are fully evaluated before they’re passed to the function. The alternative
evaluation method is call-by-name, which always reduces the outermost beta redex first.
Consider S(KI)K. If we reduced (K1) first, it would be call-by-value, and if we first
substituted (K1) into S, it would be call-by-name. Either strategy will give us the same
normal form Az.\y.z (which is alpha-equivalent to K again - verify this normal form as
an exercise).

The Church-Rosser Theorem: If A =3 B and A =g C, then there is a term D such
that C =3 D and B =3 D.

In particular, if a term can be reduced to a normal form, then it must be unique. This
property is also called confluence and it says that all reduction strategies are valid, though
not equally efficient: some strategies may require more steps than others. Consider
Ae.(x x x x x x x) (SKI). Using call-by-value, we only have to reduce SKI to a normal
form once, but using call-by-name, we will have to reduce it six times. This example
suggests that call-by-value is more efficient. But that’s not always true: consider

(My.2)(Az.z z) (A\z.x x))

Using call-by-name, the term reduces in one step to z, because y is a vacuous binder. How
many steps will call-by-value take? Find the answer yourself, but don’t take forever :).

Theorem: If a term can be reduced to a normal form, the normal form can be reached
using the call-by-name strategy.

Redundant computations in call-by-name can also be avoided with more sophisticated
implementations: if used a directed acyclic graph (DAG) instead of tree to represent terms,
then redundancies such as in A\z.(x = x = = x) can be avoided. The main difficulty in
implementing call-by-name is that we must delay computation until it’s actually needed.
This means we can’t just pass a value to a function, but must pass unexecuted code to a
function. Furthermore, the code must carry whatever information it needs in order to be
executed correctly.

Most conventional languages use call-by-value. A notable exception is Haskell. Some
newer languages (Scala) now allow functions to be defined to use either call-by-value or
call-by-name. Most conventional languages also do not reduce terms that are hidden inside
A abstractions: that is, in (Az.(Ay.y) z)A, the beta-redex inside the Az term, (Ay.y) x
is not evaluated until the outer redex is reduced first. In other words, we don’t evaluate
a function until it’s passed all of its arguments. Also, certain built-in constructs must
use call-by-name. If we think of ¢ felse as a function of three arguments then under call-
by-value (ifelse ¢ a b) will evaluate both a and b regardless of the truth value of a, and

12

it this is clearly not how we want if-else to behave. Thus, from a practical perspective,
the IFELSFE combinator we defined earlier can only be used with call-by-name. Thus in
most conventional languages, constructs such as if-else (and short-circuited booleans) are
implemented as special constructs and not just as built-in functions.

To simulate the effect of call-by-name in the call-by-value setting of conventional languages,
we have to encapsulate b and c, the terms that cannot be evaluated eagerly, inside dummy
A-abstractions:

o ifelse = AchaXb.(c a b) I

Instead of calling (/FELSE C A B), we call (ifelse C (Ax.A) (Az.B)). Here, x is assumed
to not appear free in A or B (alpha-convert otherwise). The dummy (vacuous) Az delays
the evaluation of A and B. They are not evaluated until (¢ a b) is applied to I.

The FIX combinator requires a similar treatment. The FIX combinator is also called the
Y combinator:

o Call-by-value FIX combinator: Y = dm.(Ax.m (Ay.x x y)) (Az.m (A\y.z = y))

We will use these versions of the combinators in our implementation of pure lambda
calculus in Scheme, Python and Perl.

6 Static Scoping

A critical subject we now address in lambda calculus concerns the third C program in the
introduction. This program shows the difference between static (or lexical) scoping and
dynamic scoping. C, like most languages, is statically scoped. The third C program prints
1 because the free variable x in the body of the function f refers to the static context in
which f was defined. With dynamic scoping, f would refer to the nearest declared x in
its runtime environment, which would be the = declared in main. Why is C (and most
languages) statically scoped? There are theoretical and practical ways to explain this.
Theoretically, the lambda calculus shows that it should definitely be statically scoped.

When we reduce (Ax.M) N, z is “bound” to N and then evaluated in M. We can define
a let construct that binds variables to values in this way:

o (letx=Ain B) = (\z.B) A

We can now rewrite the third C program as follows:

let v =11n (let f=(Ayx+y)in (let x=21in (f 0)))

13

This translates into the A\-term

Oz (Af.(Mz.f 0) 2) (My.z +9)) 1

Clearly, the z inside Ay.x + y refers to the outermost Az. The inner Ax is a vacuous
abstraction: this z is not used anywhere. This term beta-reduces to 1 (verify this yourself).
The scoping rules of lambda calculus are those of static scoping.

7 The Undecidability of the Halting Problem

To complete this introduction, we prove in pure lambda calculus the most important
theoretical result in computer science: the Halting Problem. Programs can take other
programs as input and attempt to analyze their behavior: this is called static analysis.
Examples of such programs include compilers and malware detectors. The Halting Prob-
lem is: does there exists a program that, given the source code of any program as well
as its input, will return true if that program terminates (halts) on that input, and false
if that program does not terminate. The problem is undecidable because there cannot be
such a program: the very existence of such a program will lead to a logical contradiction.

The Halting problem can be formulated in terms of Turing Machines as well as the (un-
typed) lambda calculus and several other equivalent formal systems. The Church-Turing
Thesis is that all algorithms can be formulated as Turing machines, or as pure lambda
terms. Therefore, the following proof is valid for all languages that claim to be “Turing
Complete:”

The proof is by contradiction (reductio ad absurdum): we make an assumption and show
that the assumption leads to an absurdity or paradox.

1. Assume that there is a pure lambda term HALT such that, given any lambda terms
P and A, (HALT P A) reduces to TRUE if (P A) is reducible to a beta normal
form, and that (HALT P A) reduces to FALSE if (P A) cannot be reduced to a
normal form.

2. Let INF = (Az.x) (Az.z x). Recall that this term has no normal form: it does
not halt.

3. Let @ = \p.(IFELSE (HALT pp) INF I). That is, if p halts on itself as input,

go into an infinite loop with I N F, otherwise, return a normal form with 1.

4. Consider the question DOES (Q Q) HALT?. That is, is (Q Q) reducible to a normal
form? Based on the assumption that (HALT @ @) returns TRUE if (@ Q) halts
and FALSE otherwise, we see from the definition of () that

if (Q Q) halts then (Q Q) does not halt, and if (Q Q) does not halt then
it halts.

14

5. We've reached a contradiction in that (@ @) halts and does not halt. The terms for
IFELSE, TRUE, FALSE, I and INF are all pure lambda terms. The only other
term we used was HALT and its assumed behavior. Therefore, the assumption that
HALT exists must be false.

The Halting Problem defines the limits of computation based on the Church-Turing model.
Many other undecidable problems are proved by reducing them to the halting problem. In
practical terms, the undecidibility of this problem means that we cannot always determine
how a program will behave even if we know its input without actually running the program.
But running the program could result in an infinite loop. This means we can’t always
experimentally determine if there are errors in our programs. Obviously, these results are
relevant to the design and use of programming languages.

8 Pure Untyped Lambda Calculus in Python

Most untyped scripting languages support untyped lambda terms directly. We summarize
the creation of a basic programming language from pure lambda calculus by implementing
it using pure lambda terms in Python.

Pure Lambda Calculus in Python (works in both Python2.2+ and Python3)

The syntax of Python differs from traditional lambda calculus in that
application is written f(x) instead of (f x), and a : is used for .

I = lambda x:x

K = lambda x:lambda y:x

S = lambda x:lambda y:lambda z:x(z) (y(2))

Note: it would not be correct to define K as lambda x,y:x, because that’s
using python’s built-in pairs. Every lambda-abstraction takes exactly

one argument, although that argument can be a tuple. To be faithful to

the build-from-scratch approach, we should use Curried functions and

not rely on built-in features as much as possible: f(a,b) is not the same
as f(a)(b).

true = K

false = K(I)

ifelse = lambda c:lambda a:lambda b:c(a) (b)
if_else = lambda c:lambda a:lambda b:c(a)(b) (I) # simulates call-by-name
NOT = lambda a:a(false) (true)

print (ifelse(NOT(true)) (1) (2)) ### prints 2

15

Church numerals

ZERQO = false

ONE = lambda f:lambda x:f(x)

PLUS = lambda m:lambda n:lambda f:lambda x:m(f) (n(f) (x))
TIMES = lambda m:lambda n:lambda f:lambda x:m(n(f)) (x)

linked lists

CONS = lambda a:lambda b:lambda c:c(a)(b)

CAR = lambda p:p(true)

CDR = lambda p:p(false)

NIL ZERO

ISNIL = lambda p:p(lambda x:lambda y:lambda z:false) (true)

applicative order FIX combinator for recursive definitions
FIX = lambda m:(lambda x:m(lambda y:x(x)(y))) (lambda x:(m(lambda y:x(x)(y))))

Primes = CONS(2) (CONS(3) (CONS(5) (CONS(7) (CONS(11) (NIL)))))
print (CAR(CDR(Primes))) ### prints 3, the second prime

functions to convert Python numerals to Church numerals:

def Church(n): # converts non-neg integer n to Church numeral
if (n==0): return ZERO
elif n>0: return PLUS(ONE) (Church(n-1))
#
def Unchurch(c): # converts Church numeral c to Python integer:
return c(lambda y:1+y) (0)
#
for example, Unchurch(TWO) beta-reduces to
(lambda f:lambda x:f(f(x)))(lambda y:1+y)(0), which reduces to 1+1+0=2

Unfortunately, Python cannot print intermediate lambda terms: it does
does not support "higher order abstract syntax".

C25 = Church(25) # pure lambda representation of 25
print (Unchurch(C25)) #### prints 25

pure lambda function to add all numbers in a linked list:
SUM = FIX(lambda f:lambda n:if_else(ISNIL(n)) (lambda y:ZERO) (
lambda y:PLUS(CAR(n)) (£(CDR(n)))))
L = CONS(Church(1)) (CONS(Church(2)) (CONS(Church(4)) (CONS(Church(8)) (NIL))))
ANSWER = SUM(L)

print (Unchurch(ANSWER)) ### prints 15
end of program

16

9 Loose Ends and Typed Lambda Calculus

There are some important items about the lambda calculus that I did not cover, including
“eta-reduction:” this rule just states that A = A\z.A x. For example, the term for Church
mulitplication, AmAnAfAz.m (n f) x, can also be written equivalently as (n-reduces to)
AmAnAf.m (n f). Most importantly, we did not cover typed lambda calculus. A typed
program is a logically consistent program: a value cannot have conflicting types. Types
can also be abstracted over (made generic). The type of a function is written a — b where
a is the type of the argument (A-bound variable) and b is the type of the body. I = \z.z,
for example, has generic type a — a and K = AxAy.z has generic type a — b — a, with
the — operator on types associating to the right. Variables are associated with types that
they’re assumed to have, using notation such as x : int. From a set of assumptions we
derive a type on the right of the - symbol using the following rules:

ria,...mM:b .FM:a—=b ...FN:a
x:a,...Fx:a oFXeM:ia—b .F(M N):b

You should be able to derive the types for I and K using the first two rules. The last rule
correspond to the classical syllogism modus ponens and establishes the correspondence
between types and logic. The following is a sample type derivation using the rules:

y:a—>bky:a—b riaklx:a
ria,y:a—bE(yx):b
xiakXy:yxz:(a—b)—b
FAxdyyx:a— (a—b)—b

An important consequence of introducing types is that beta-reduction (and alpha/eta
conversion) must preserve the types of terms:

Theorem: Type Soundness. Ift s : A is a valid type derivation for lambda term s
and s =g t, thent=t: A is also a valid type derivation.

This core result (also referred to as subject reduction) is what we mean by a computation
being type safe: 3+1 is an integer, and 4, the normal form, is also an integer.

Another consequence of enforcing typing rules is that certain terms, such as Az.(x z), is
not typable (does not have a type). To encode a programming language that allows for re-
cursion and repetition, the fixed pointer operator, with property FIX M = M (FIX M),
must be imported as an extra constant.

The lambda calculus is the universal language of the programming language research
community. Hopefully this document has introduced you to a new way to think about
programming and programming languages.

17

